

on Mars.

Acetic acid is an ideal intermediate compound as:

the following service environment must be considered.

Figure 7. 3D representation of proposed heat exchanger.

	Process	Net Heat Transfer	<u></u> (W]
1	Cooling MOXIE Input	Loss	1078
2	Heating Methyl Iodide Input	Gain	34
3	Heat Adjustment into Reactor 1	Gain	685
4	Heat Adjustment for Reactor 2	Gain	102
5	Cooling output of Reactor 2	Loss	657
6	Heating into Distillation Column	Gain	663

Manufacturing from CO₂: Acetic Acid Synthesis on Mars

Industry Advisor: NASA Haroon Dawood¹, Stephanie Gaglione¹, Kate Lonergan², Jason Martins¹, Madhushan Perera¹, Kevin Wang², Ya-Huei (Cathy) Chin^{1*}

1 Department of Chemical Engineering and Applied Chemistry, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Canada | *Faculty Advisor 2 Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Canada

A valuable next step would be to prototype the system in a lab-scale setup to provide a proof-of-concept. Thereafter, experimental production rates can be correlated back to the design. A 10% scale

Parameter		Traditional Method	Proposed Design			
Parameter	Conversion Factor	Shipped Food	Two 2000 L <i>Spirulina</i> - producing bioreactors	24 kg/day Acetic Acid Production		
Mass	1.15 kg/kg	2,506 kg	1,588 kg	552 kg		
Volume	216 kg/m ³	12.7 m ³	9.9 m ³	1.02 m ³		
Power	228 kg/kW	1.5 kW	0.01 kW	3.7 kW		
Cooling	145 kg/kW	1.5 kW	0.01 kW	2.4 kW		
Crew Time	1.25 kg/h	0 h	30 h	225 h		
ESM Launch		5,816 kg	3,765 kg	2,327 kg		
ESM per Mission		5,816 kg	783 kg	932 kg		
Table 1. ESM Cost Analysis of Shipped and Proposed System for Food Production						

ESM = Mass x γ_m + Volume x γ_v + Power x γ_n + Cooling x γ_c + Crew time x γ_{ct}